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Economics of Limited Liability
• Assume a single period – the insurer is 

formed at t=0, and cash flows are realized 
one period later (at t=1). 

• Y0, P0, and S0 represent t=0 market values 
of assets, policyholder claims, and surplus, 
where Y0 = S0 + P0.

• Y1, P1, and S1 represent t=1 market values, 
where Y1 = P1 + S1 = (S0 + P0)(1 + ri), S1
= Y1 – P1, and P1 = L – Max[L - Y1, 0].
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Economics of Limited Liability
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Asymmetric Taxes

• Insurers pay taxes (at rate ) on 
underwriting profits and the taxable 
portion () of investment income; i.e., 
T1= [(Y1 –Y0) + (P0-L)] = [Y1–TS], 
where TS = L + S0 + (1-)ri(S0 + P0).

• Furthermore, the government claims 
limited liability; therefore, T1= 
Max[Y1–TS, 0].
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Limited Liability and Asymmetric Taxes
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Motivation

Here, we provide an alternative derivation of the
Black-Scholes-Merton call and put option pricing formulas
using an integration rather than differential equations
approach.

The integration approach clarifies the economics and
mathematics of option pricing theory and conveys a deeper
and better intuitive understanding of option pricing theory
and its applications using basic calculus and statistics.

Comparative statics are also derived.
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Risk Neutral Valuation Relationship

Definition: A risk-neutral valuation relationship (RNVR)
exists if the relationship between the price of an derivative
security (e.g., an option) and the price of its underlying asset
does not depend upon investor risk preferences.

Black-Scholes-Merton’s (BSM’s) key insight was that by
dynamically hedging a long (short) call with a short (long)
stock position, investors create riskless hedge portfolios which
imply a specific type of RNVR.

Given this RNVR, for a given price of the underlying stock,
there exists a unique value for the option that is implied by the
RNVR.

An alternative path to an RNVR involves imposing
restrictions on investor preferences and asset price
distributions; here, we focus our attention on the dynamic
hedging path chosen by BSM.
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Geometric Brownian Motion

Black and Scholes assume that stock prices change
continuously according to the Geometric Brownian Motion
equation; i.e.,

dS = µSdt+ σSdz. (1)

where dz = ε
√
dt, ε is a standard normal random variable,

dS is the stock price change per dt time unit, S is the current
stock price, µ is the expected return, and σ represents
volatility.
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Ito’s Lemma

At any given point in time, the value of the call option (C )
depends upon the value of the underlying asset; i.e., C =
C (S,t).

Ito’s Lemma justifies the use of a Taylor-series-like expansion
for the differential dC :

dC =
∂C

∂t
dt+

∂C

∂S
dS +

1

2

∂2C

∂S2
dS2. (2)

Since dS2 = S2σ2dt, substituting for dS2 in equation yields
equation:

dC =
∂C

∂t
dt+

∂C

∂S
dS +

1

2
σ2S2∂

2C

∂S2
dt. (3)
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Ito’s Lemma

V = C (S, t) - ∆tS, implying that

dV = dC−∆tdS =

(
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2

)
dt︸ ︷︷ ︸

deterministic

+

(
∂C

∂S
−∆t

)
dS.︸ ︷︷ ︸

stochastic

(4)

If ∂C/∂S = ∆t, then

dV = dC −∆tdS =

(
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2

)
dt. (5)
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The Black-Scholes-Merton RNVR

In order to prevent arbitrage, the hedge portfolio must earn
the riskless rate of interest r ; i.e.,

dV = rV dt. (6)

∆t =
∂C

∂S
implies that V = C -

∂C

∂S
S. Substituting C -

∂C

∂S
S

in place of V on the right-hand side of equation (6) and
equating this with the right-hand side of equation (5), we
obtain:

r

(
C − S∂C

∂S

)
dt =

(
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2

)
dt. (7)
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The Black-Scholes-Merton RNVR

Dividing both sides of equation (7) by dt and rearranging
results in the Black-Scholes-Merton (non-stochastic) partial
differential equation:

rC =
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
. (8)

Equation (8) shows that the valuation relationship between a
call option and its underlying asset is deterministic.

Since risk preferences play no role in equation (8), this implies
that the price of a call option can be calculated as if investors
are risk neutral.

Today’s call option price (C ) must satisfy equation (8),
subject to the constraint (or “boundary condition”) that Ct =
Max [St – X, 0].
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Solving the Black-Scholes-Merton RNVR for the option
price

Black-Scholes transform equation (8) into a heat transfer
equation and employ a solution procedure from a textbook on
applications of Fourier series to boundary value problems in
engineering and physics, resulting in the following equation for
the value of a European call option on a (non-dividend
paying) stock:

C = SN(d1)−Xe−rtN(d2), (9)

where

d1 =
ln(S/X) + (r + .5σ2)t

σ
√
t

;

d2 = d1 − σ
√
t;

σ2= variance of underlying asset’s rate of return; and
N(z) = standard normal distribution function evaluated

at z.
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Option Pricing via Integration

The value today (C ) of a European call option that pays Ct =
Max [St– X, 0] at date t is given by the following equation:

C = V (Ct) = V (Max[St −X, 0]) . (10)

The valuation operator V (.) determines the call option price
by discounting the risk neutral expected value of the option’s
payoff at expiration (Ê (Ct)) at the riskless rate of interest:

C = e−rtÊ (Ct) = e−rt
∫ ∞
X

(St −X)ĥ(St)dSt, (11)

where ĥ(St) represents the risk neutral lognormal density
function of St.
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Option Pricing via Integration

We’ll start by calculating the expected value of Ct (E(Ct)),
rather than its risk neutral expected value (Ê (Ct)):

E(Ct) = E[Max(St−X, 0)] =

∫ ∞
X

(St −X)h(St)dSt, (12)

where h(St) represents St
′s lognormal density function.

Statistical Note: The main difference between the ĥ(St) and
h(St) density functions is that the location parameter for
h(St) is µt, whereas it is (r − .5σ2)t for ĥ(St) This is
conceptually similar to the relationship between the actual
probability of an “up” move in the binomial model compared
with the corresponding risk neutral probability of an “up”
move.
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Option Pricing via Integration

Next, we evaluate the integral given by equation (12) by
rewriting it as the difference between two integrals:

E(Ct) =

∫ ∞
X

Sth(St)dSt −X
∫ ∞
X

h(St)dSt

= EX(St)−Xe−rt [1−H(X)] . (13)

Next, we define the t-period lognormally distributed price
ratio as Rt = St/S. Thus, St = S (Rt), and we rewrite
equation (13) as

E(Ct) = S

∫ ∞
X/S

Rtg(Rt)dRt −X
∫ ∞
X/S

g(Rt)dRt

= SEX/S(Rt)−X[1−G(X/S)], (14)
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Option Pricing via Integration

Next, consider the partial expected value of the terminal stock
price, SEX/S(Rt). Note that:

Rt = ekt, where k is the rate of return on the underlying asset
per unit of time.
ln (Rt) = kt is normally distributed with density f (kt), mean
µkt and variance σ2

kt.
Since g(Rt) = (1/Rt)f (kt) and dRt = ekttdk, it follows that
Rtg(Rt)dRt = ektf(kt)tdk; thus,

SEX/S(Rt) = S

∫ ∞
ln(X/S)

ektf(kt)tdk

= S
1√

2πσ2t

∫ ∞
ln(X/S)

ekte−{.5[(kt−µt)
2/σ2t]}tdk. (15)
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Option Pricing via Integration

Note that

ekte−{.5[(kt−µt)
2/σ2t]} = e−{.5t[(k

2−2µk+µ2−2σ2k)/σ2]}

= e−{.5t[(k
2−2µk+µ2−2σ2k+σ4−σ4)/σ2]}

= e−{.5t[((k−µ−σ
2)

2−σ4−2µσ2)/σ2]}

= e(µ+.5σ
2)te−{.5[(kt−(µ+σ

2)t)
2
/σ2t]}.(16)

In (16), e(µ+.5σ
2)t = E(Rt)!
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 Therefore, 

2 2 2

/

{.5[( ( ) ) / ]}

2 ln( / )

( ) ( )
1

2

X S t t

kt t t

X S

SE R SE R

e tdk
t

  



   

 


 

 
2 2 2{.5[( ( ) ) / ]}

2 ln( / )

1( ) .
2

kt t t
t X S

E S e tdk
t

  



     (17) 

 Next, let y = 2[ ( ) ]/kt t t     kt = 
2( )t t y     and tdk = .t dy   

 

Option Pricing Formula Derivation
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 Thus, (18) follows: 
2

2

1

1

.5
/

ln( / ) ( )

1

( ) ( ) [ / 2 ]

( ) ( ) ( ) ( )

( ) ( ),

y
X S t t

X S t
t

t t

t

SE R E S e dy

E S n y dy E S n y dy

E S N

 













 



 



 





   

where 1( )N   is the standard normal distribution 
function evaluated at y = 1.  

 

Option Pricing Formula Derivation
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 Next, consider 
/

( )t tX S
X g R dR



  (see (14)).  Since 
( )t tg R dR  = ( )f kt tdk, (19) obtains: 

 
2 2

/ ln( / )

{.5[( ) / ]}

2 ln( / )

( ) ( )

1 .
2

t tX S X S

kt t t

X S

X g R dR X f kt tdk

X e tdk
t

 



 

  





 


(19) 

Option Pricing Formula Derivation
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 Let z = [ ]/kt t t   kt t tz    and 
tdk = t dz   limit of integration is 
[ln( / ) ]/X S t t   = -( 1  - t ) = 2 .   
 Thus, (20) obtains: 

 
2

2

2

/

.5

2

( )

[ / 2 ]

( ) ( ).

t tX S

z

X g R dR

X e dz

X n z dz XN











 







 







 (20) 

Option Pricing Formula Derivation
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 Substituting (18) and (20) into (14) yields (21): 
 1 1( ) ( ) ( ) ( ).t tE C E S N XN t      (21)  

 Since  ˆ ˆ [ ( ,0)],rt rt
t tC e E C e E Max S X     we 

need to determine risk neutral values for  ( )tE S  and 
1 . 

 Since 2( .5 )t  =rt in a risk neutral economy, 

ˆ ( ) rt
tE S Se ; 

2

1 1
ln( / ) ( .5 )ˆ S X r td

t



 

  . 
 

Option Pricing Formula Derivation
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 Substituting (21) into (11) and simplifying yields 
the Black-Scholes call option pricing formula: 

 

 

1 1

1 2

ˆ

( ) ( )

( ) ( ).

rt
t

rt rt

rt

C e E C

e Se N d XN d t

SN d Xe N d











    
 

   (22) 

 

Option Pricing Formula Derivation
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 The put option pricing formula follows directly 
from the put-call parity theorem:  

 

 
   
1 2

2 1

2 1

( ) ( )

1 ( ) 1 ( )

( ) ( ).

rt

rt rt

rt

rt

P C Xe S

SN d Xe N d Xe S

Xe N d S N d

Xe N d SN d



 





  

   

   

   

 (23) 

 

Option Pricing Formula Derivation
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Comparative Statics

 What is the call option hedge ratio (C/S; aka 
“delta”)? 
C/S = N( 1d )+S(N( 1d )/ 1d )( 1d /S) - 

X rte (N( 2d )/ 2d )( 2d /S) 

 = N( 1d )+Sn( 1d )( 1d /S) - X rte n( 2d )( 2d /S) (24) 

Substituting 2d = 1d  - t ,   2d /S =  1d /S and 
n( 2d ) = n( 1d  - t ), (25) obtains: 
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Comparative Statics
C/S = N( 1d )+( 1d /S)[Sn( 1d )-X rte n( 1d  - t )] 

= N( 1d ) + ( 1d /S)
1
2

 [S
2
1.5de - X 

2
1.5( )rt d te e    ] (25) 

Since 1d  = [ln(S/X) + 2( .5 ) ]/ ,r t t    S = 
2

1 ( .5 )d t r tXe    .  Substituting for S in (25)’s bracketed 
term yields: 

C/S = N( 1d ) +  

 1 /
2

d S


  [X
2
1.5de

2
1 ( .5 )d t r te    - X 

.5 2
1.5( )rt d te e    ])] 
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Comparative Statics

= N( 1d ) + 1 /
2

d S


   [X(
2 2

1 1( .5 ) .5r t d t de       

- 
2 2

1 1( .5 ) .5r t d t de      )]  = N( 1d ) > 0 (26)  
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Comparative Statics
 What is the put option hedge ratio (P/S)? 
P/S = -N(- 1d )+X rte (N(- 2d )/ 2d )( 2d /S) - 

S(N(- 1d )/ 1d )( 1d /S) 

= -N(- 1d )-X rte n(- 2d )( 1d /S)+Sn(- 1d )( 1d /S)  

= -N(- 1d )+ ( 1d /S)[Sn(- 1d ) - X rte n( t - 1d )] (27) 

Since Sn(- 1d ) - X rte n( t - 1d ) = Sn( 1d ) - X rte n( 1d  -
t ) = 0, P/S = -N(- 1d ) < 0.   
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Comparative Statics
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Comparative Statics
 Note that the call option delta is N( 1d ), whereas the 
put option delta -N(- 1d ) = N( 1d )-1!  
 

Call Delta (N( 1d )) Put Delta (-N(- 1d ))

1 0
.8 -.2
.6 -.4
.4 -.6
.2 -.8
0 -1
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Comparative Statics
 How about C/X? 
C/X = - rte N( 2d ) +S(N( 1d )/ 1d )( 1d /X) - 

X rte (N( 2d )/ 2d )( 2d /X) 

= - rte N( 2d ) + Sn( 1d ) 1d
X



 - X rte n( 2d ) 2d
X



 (28) 

Substituting 2d  = 1d  - t ,  2d /X =  1d /X and n( 2d ) =
n( 1d  - t ), (29)’ obtains: 

C/X= - rte N( 2d ) + 1d
X



[Sn( 1d ) - X rte n( 1d  - t )]  

=  - rte N( 2d ) < 0. (29)’
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Comparative Statics
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Comparative Statics

 How about P/X? 

 P/X = rte N(- 2d ) + X rte ( 2

2

( )N d
d

 


2d
X



) 

- S( 1

1

( )N d
d

 


1d
X



) 

 = rte N(- 2d ) - X rte n(- 2d ) 1d
X



 + Sn(- 1d )( 1d /X)  

 = rte N(- 2d ) + ( 1d /X)[Sn(- 1d ) - X rte n( t - 1d )] 

 =  rte N(- 2d ) > 0. (30)’ 
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Comparative Statics
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Comparative Statics
 How about C/r (aka “rho”)? 

 

C/r = tX rte N(d2)+S( 1

1

( )N d
d




1d
r




) - X rte ( 2

2

( )N d
d




2d
r




) 

= tX rte N( 2d ) + Sn( 1d ) 1d
r




 - X rte n( 2d ) 1d
r




  

= tX rte N( 2d ) + 1d
r




[Sn( 1d ) - X rte n( 1d  - t )]  

 = tX rte N( 2d ) > 0. (31)  
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Comparative Statics
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Comparative Statics
 How about P/r? 

 
P
r




= -tX rte N(- 2d )+X rte ( 2

2

( )N d
d

 


2d
r




)-S( 1

1

( )N d
d

 


1d
r






= -tX rte N(- 2d ) - X rte n(- 2d ) 1d
r




 + Sn(- 1d ) 1d
r




 

= -tX rte N(- 2d ) + 1d
r




[Sn(- 1d ) - X rte n( t - 1d )] 

 = -tX rte N(- 2d ) < 0. (32) 
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Comparative Statics
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Comparative Statics
 How about C/t (aka “theta”)? 

C
t




= rX rte N( 2d )+S( 1

1

( )N d
d




1d
t




) - X rte ( 2

2

( )N d
d




2d
t




)  (33) 

Substituting X = 
2

1 ( .5 )d t r tSe      into (33), 
C
t




=
2

1 ( .5 )1 2
2 1 2( ) [ ( ) ( ) ]rt d t r t rtd drXe N d S n d e n d

t t
      

 
 

 
2 2 2
1 1 1.5 ( .5 ) .5( )1 2

2( )+ [ ]
2

rt d d t r t rt d tS d drXe N d e e
t t

  


        

 
 

2 2 2 2
1 1 1 1- .5 .5 .5 .51 2

2( )  [ ]
2

rt d d t d t rt rt t t dS d drXe N d e e
t t

   


        

  
 
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- -1 2

2 1 2 1
.5( ) ( )[ ] ( ) ( )rt rtd drXe N d Sn d rXe N d Sn d

t t t
 

    
 

  

Thus (as indicated in (34) above), /C t   > 0. 
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1
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3

4

dC dt as a Function of Stock Price
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 How about P/t?  Consider equation (35): 

P
t




= -rX rte N(- 2d )-X rte ( 2

2

( )N d
d




2d
t




)+S( 1

1

( )N d
d




1d
t




) (35) 

Substituting X = 
2

1 ( .5 )d t r tSe      into (35),   
2

1 ( .5 )- 2 1
2 2 1( ) ( ) ( )d t r t rtrtP d drXe N d Se n d Sn d

t t t
      

    
  

2 2
1 1.5 .5( )- 2 1

2 1( ) ( )
2

d t t d trt S d drXe N d e Sn d
t t

  


     

    
 

 

- -2 1
2 1 2 1

.5( ) ( )[ ] ( )+ ( ) .rt rtd drXe N d Sn d rXe N d Sn d
t t t

 
       

 
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 How about C/ (aka “vega”)? 

 -1 21 2

1 2

( ) ( )- .rtN d N dC d dS Xe
d d  

   


    
 (36) 

Substituting 2
2

2

( ) ( )N d n d
d





, 2 1d d t

 
 

 
 

, and X = 
2

1 ( .5 )d t r tSe      into (36), 

 
2

1 ( .5 )1 2
1 2( ) - ( )d t r t rtC d dS n d e n d 

  
           
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 21

2
1

.5
( .5 )1 1

1( )
2

d t
d t r t rtd e dSn d Se t


 

 

 
          

  (37) 

Since  22 21 1 1
.5 .5 .5d t rt t rt d t de e         , equation (37) can be 

rewritten as  

1 1
1 1( ) ( )C d dSn d t Sn d t

  
             

 (38) 

 
Thus (as indicated in (38) above), C/  > 0. 
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 How about P/? 

- 2 2 1 1

2 1

( ) ( )rtP N d d N d dXe S
d d  

      
 

    
 

  = - 2 1
1 1( ) ( )rt d dXe n t d Sn d

 
 

   
 

. (39) 

Substituting 2 1,d t d   2 1 ,d d t
 
 

 
 

 and X 

=
2

1 ( .5 )d t r tSe      into (39) yields: 
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 22
1 1.5 .5

1 1
1[ ( ) ( )]

2

d t rt t rt t dP d e dS n d t
d

  

  

     
  

   
 

  

 
1 1

1( )[ ( )]d dSn d t
 
 

   
 

 

 1( ) .Sn d t   (40) 

 
Thus (as indicated in (40) above), P/  > 0. 
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