Markets for Risk Management

Applications of Option Pricing Theory to Insurance

This lecture note is based primarily upon
Garven, James R., 2013, "Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Equations.

Copyright J. R. Garven. Not to be reproduced without permission.

Economics of Limited Liability

- Assume a single period - the insurer is formed at $t=0$, and cash flows are realized one period later (at $t=1$).
- Y_{0}, P_{0}, and S_{0} represent $t=0$ market values of assets, policyholder claims, and surplus, where $Y_{0}=S_{0}+P_{0}$.
- Y_{1}, P_{1}, and S_{1} represent $t=1$ market values, where $Y_{1}=P_{1}+S_{1}=\left(S_{0}+P_{0}\right)\left(1+r_{i}\right), S_{1}$ $=Y_{1}-P_{1}$, and $P_{1}=L-\operatorname{Max}\left[L-Y_{1}, 0\right]$.

Economics of Limited Liability

Asymmetric Taxes

- Insurers pay taxes (at rate τ) on underwriting profits and the taxable portion (θ) of investment income; i.e., $T_{1}=\tau\left[\theta\left(Y_{1}-Y_{0}\right)+\left(P_{0}-L\right)\right]=\tau\left[Y_{1}-T S\right]$, where $T S=L+S_{0}+(1-\theta) r_{\mathrm{i}}\left(S_{0}+P_{0}\right)$.
- Furthermore, the government claims limited liability; therefore, $T_{1}=$ $\tau \mathrm{Max}\left[Y_{1}-T S, 0\right]$.

Asymmetric Taxes

Limited Liability and Asymmetric Taxes

Applications or uption rricing a neory to insurance
Page 6

Motivation

- Here, we provide an alternative derivation of the Black-Scholes-Merton call and put option pricing formulas using an integration rather than differential equations approach.
- The integration approach clarifies the economics and mathematics of option pricing theory and conveys a deeper and better intuitive understanding of option pricing theory and its applications using basic calculus and statistics.
- Comparative statics are also derived.

Risk Neutral Valuation Relationship

- Definition: A risk-neutral valuation relationship (RNVR) exists if the relationship between the price of an derivative security (e.g., an option) and the price of its underlying asset does not depend upon investor risk preferences.
- Black-Scholes-Merton's (BSM's) key insight was that by dynamically hedging a long (short) call with a short (long) stock position, investors create riskless hedge portfolios which imply a specific type of $R N V R$.
- Given this $R N V R$, for a given price of the underlying stock, there exists a unique value for the option that is implied by the $R N V R$.
- An alternative path to an RNVR involves imposing restrictions on investor preferences and asset price distributions; here, we focus our attention on the dynamic hedging path chosen by BSM.

Geometric Brownian Motion

- Black and Scholes assume that stock prices change continuously according to the Geometric Brownian Motion equation; i.e.,

$$
\begin{equation*}
d S=\mu S d t+\sigma S d z \tag{1}
\end{equation*}
$$

where $d z=\varepsilon \sqrt{d t}, \epsilon$ is a standard normal random variable, $d S$ is the stock price change per $d t$ time unit, S is the current stock price, μ is the expected return, and σ represents volatility.

Ito's Lemma

- At any given point in time, the value of the call option (C) depends upon the value of the underlying asset; i.e., $C=$ $C(S, t)$.
- Ito's Lemma justifies the use of a Taylor-series-like expansion for the differential $d C$:

$$
\begin{equation*}
d C=\frac{\partial C}{\partial t} d t+\frac{\partial C}{\partial S} d S+\frac{1}{2} \frac{\partial^{2} C}{\partial S^{2}} d S^{2} \tag{2}
\end{equation*}
$$

- Since $d S^{2}=S^{2} \sigma^{2} d t$, substituting for $d S^{2}$ in equation yields equation:

$$
\begin{equation*}
d C=\frac{\partial C}{\partial t} d t+\frac{\partial C}{\partial S} d S+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}} d t \tag{3}
\end{equation*}
$$

Ito's Lemma

- $V=C(S, t)-\Delta_{t} S$, implying that

$$
\begin{equation*}
d V=d C-\Delta_{t} d S=\underbrace{\left(\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}\right) d t}_{\text {deterministic }}+\underbrace{\left(\frac{\partial C}{\partial S}-\Delta_{t}\right) d S}_{\text {stochastic }} \tag{4}
\end{equation*}
$$

- If $\partial C / \partial S=\Delta_{t}$, then

$$
\begin{equation*}
d V=d C-\Delta_{t} d S=\left(\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}\right) d t \tag{5}
\end{equation*}
$$

The Black-Scholes-Merton RNVR

- In order to prevent arbitrage, the hedge portfolio must earn the riskless rate of interest r; i.e.,

$$
\begin{equation*}
d V=r V d t \tag{6}
\end{equation*}
$$

- $\Delta_{t}=\frac{\partial C}{\partial S}$ implies that $V=C-\frac{\partial C}{\partial S} S$. Substituting $C-\frac{\partial C}{\partial S} S$ in place of V on the right-hand side of equation (6) and equating this with the right-hand side of equation (5), we obtain:

$$
\begin{equation*}
r\left(C-S \frac{\partial C}{\partial S}\right) d t=\left(\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}\right) d t \tag{7}
\end{equation*}
$$

The Black-Scholes-Merton RNVR

- Dividing both sides of equation (7) by $d t$ and rearranging results in the Black-Scholes-Merton (non-stochastic) partial differential equation:

$$
\begin{equation*}
r C=\frac{\partial C}{\partial t}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}+r S \frac{\partial C}{\partial S} \tag{8}
\end{equation*}
$$

- Equation (8) shows that the valuation relationship between a call option and its underlying asset is deterministic.
- Since risk preferences play no role in equation (8), this implies that the price of a call option can be calculated as if investors are risk neutral.
- Today's call option price (C) must satisfy equation (8), subject to the constraint (or "boundary condition") that $C_{t}=$ $\operatorname{Max}\left[S_{t}-X, 0\right]$.

Solving the Black-Scholes-Merton RNVR for the option price

- Black-Scholes transform equation (8) into a heat transfer equation and employ a solution procedure from a textbook on applications of Fourier series to boundary value problems in engineering and physics, resulting in the following equation for the value of a European call option on a (non-dividend paying) stock:

$$
\begin{equation*}
C=S N\left(d_{1}\right)-X e^{-r t} N\left(d_{2}\right) \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
& d_{1}=\frac{\ln (S / X)+\left(r+.5 \sigma^{2}\right) t}{\sigma \sqrt{t}} \\
& d_{2}=d_{1}-\sigma \sqrt{t} \\
& \sigma^{2}=\text { variance of underlying asset's rate of return; and } \\
& N(z)=\text { standard normal distribution function evaluated }
\end{aligned}
$$ at z.

Option Pricing via Integration

- The value today (C) of a European call option that pays $C_{t}=$ $\operatorname{Max}\left[S_{t^{-}} X, 0\right]$ at date t is given by the following equation:

$$
\begin{equation*}
C=V\left(C_{t}\right)=V\left(\operatorname{Max}\left[S_{t}-X, 0\right]\right) \tag{10}
\end{equation*}
$$

The valuation operator $V(\cdot)$ determines the call option price by discounting the risk neutral expected value of the option's payoff at expiration $\left(\hat{E}\left(C_{t}\right)\right)$ at the riskless rate of interest:

$$
\begin{equation*}
C=e^{-r t} \hat{E}\left(C_{t}\right)=e^{-r t} \int_{X}^{\infty}\left(S_{t}-X\right) \hat{h}\left(S_{t}\right) d S_{t} \tag{11}
\end{equation*}
$$

where $\hat{h}\left(S_{t}\right)$ represents the risk neutral lognormal density function of S_{t}.

Option Pricing via Integration

- We'll start by calculating the expected value of $C_{t}\left(E\left(C_{t}\right)\right)$, rather than its risk neutral expected value $\left(\hat{E}\left(C_{t}\right)\right)$:

$$
\begin{equation*}
E\left(C_{t}\right)=E\left[\operatorname{Max}\left(S_{t}-X, 0\right)\right]=\int_{X}^{\infty}\left(S_{t}-X\right) h\left(S_{t}\right) d S_{t} \tag{12}
\end{equation*}
$$

where $h\left(S_{t}\right)$ represents $S_{t}{ }^{\prime}$ s lognormal density function.

- Statistical Note: The main difference between the $\hat{h}\left(S_{t}\right)$ and $h\left(S_{t}\right)$ density functions is that the location parameter for $h\left(S_{t}\right)$ is μt, whereas it is $\left(r-.5 \sigma^{2}\right) t$ for $\hat{h}\left(S_{t}\right)$ This is conceptually similar to the relationship between the actual probability of an "up" move in the binomial model compared with the corresponding risk neutral probability of an "up" move.

Option Pricing via Integration

- Next, we evaluate the integral given by equation (12) by rewriting it as the difference between two integrals:

$$
\begin{align*}
E\left(C_{t}\right) & =\int_{X}^{\infty} S_{t} h\left(S_{t}\right) d S_{t}-X \int_{X}^{\infty} h\left(S_{t}\right) d S_{t} \\
& =E_{X}\left(S_{t}\right)-X e^{-r t}[1-H(X)] \tag{13}
\end{align*}
$$

- Next, we define the t-period lognormally distributed price ratio as $R_{t}=S_{t} / S$. Thus, $S_{t}=S\left(R_{t}\right)$, and we rewrite equation (13) as

$$
\begin{align*}
E\left(C_{t}\right) & =S \int_{X / S}^{\infty} R_{t} g\left(R_{t}\right) d R_{t}-X \int_{X / S}^{\infty} g\left(R_{t}\right) d R_{t} \\
& =S E_{X / S}\left(R_{t}\right)-X[1-G(X / S)] \tag{14}
\end{align*}
$$

Option Pricing via Integration

- Next, consider the partial expected value of the terminal stock price, $S E_{X / S}\left(R_{t}\right)$. Note that:
- $R_{t}=e^{k t}$, where k is the rate of return on the underlying asset per unit of time.
- $\ln \left(R_{t}\right)=k t$ is normally distributed with density $f(k t)$, mean $\mu_{k} t$ and variance $\sigma_{k}^{2} t$.
- Since $g\left(R_{t}\right)=\left(1 / R_{t}\right) f(k t)$ and $d R_{t}=e^{k t} t d k$, it follows that $R_{t} g\left(R_{t}\right) d R_{t}=e^{k t} f(k t) t d k$; thus,

$$
\begin{aligned}
S E_{X / S}\left(R_{t}\right) & =S \int_{\ln (X / S)}^{\infty} e^{k t} f(k t) t d k \\
& =S \frac{1}{\sqrt{2 \pi \sigma^{2} t}} \int_{\ln (X / S)}^{\infty} e^{k t} e^{-\left\{.5\left[(k t-\mu t)^{2} / \sigma^{2} t\right]\right\}} t d k .(15)
\end{aligned}
$$

Option Pricing via Integration

- Note that

$$
\begin{aligned}
e^{k t} e^{-\left\{.5\left[(k t-\mu t)^{2} / \sigma^{2} t\right]\right\}} & =e^{-\left\{.5 t\left[\left(k^{2}-2 \mu k+\mu^{2}-2 \sigma^{2} k\right) / \sigma^{2}\right]\right\}} \\
& =e^{-\left\{.5 t\left[\left(k^{2}-2 \mu k+\mu^{2}-2 \sigma^{2} k+\sigma^{4}-\sigma^{4}\right) / \sigma^{2}\right]\right\}} \\
& =e^{-\left\{.5 t\left[\left(\left(k-\mu-\sigma^{2}\right)^{2}-\sigma^{4}-2 \mu \sigma^{2}\right) / \sigma^{2}\right]\right\}} \\
& =e^{\left(\mu+.5 \sigma^{2}\right) t} e^{-\left\{.5\left[\left(k t-\left(\mu+\sigma^{2}\right) t\right)^{2} / \sigma^{2} t\right]\right\}} .(16)
\end{aligned}
$$

- $\operatorname{In}(16), e^{\left(\mu+.5 \sigma^{2}\right) t}=E\left(R_{t}\right)$!

Option Pricing Formula Derivation

-Therefore,

$$
S E_{X / S}\left(\mathrm{R}_{t}\right)=S E\left(\mathrm{R}_{t}\right) \times
$$

$$
\frac{1}{\sqrt{2 \pi \sigma^{2} t}} \int_{\ln (X / S)}^{\infty} e^{-\left\{.5\left[\left(k t-\left(\mu+\sigma^{2}\right) t\right)^{2} / \sigma^{2} t\right]\right\}} d d k
$$

$$
=E\left(S_{t}\right) \frac{1}{\sqrt{2 \pi \sigma^{2} t}} \int_{\ln (X / S)}^{\infty} e^{-\left\{.5\left[\left(k t-\left(\mu+\sigma^{2}\right) t\right)^{2} / \sigma^{2} t\right]\right\}} t d k . \text { (17) }
$$

- Next, let $y=\left[k t-\left(\mu+\sigma^{2}\right) t\right] / \sigma \sqrt{t} \Rightarrow k t=$ $\left(\mu+\sigma^{2}\right) t+\sigma \sqrt{t} y$ and $t d k=\sigma \sqrt{t} d y$.

Option Pricing Formula Derivation

-Thus, (18) follows:

$$
\begin{aligned}
S E_{X / S}\left(R_{t}\right) & =E\left(S_{t}\right) \int_{\frac{\ln (X / s)-\left(\mu+\sigma^{2}\right) t}{\sigma \sqrt{t}}}\left[e^{-.5 y^{2}} / \sqrt{2 \pi}\right] d y \\
& =E\left(S_{t}\right) \int_{-\delta_{1}}^{\infty} n(y) d y=E\left(S_{t}\right) \int_{-\infty}^{\delta_{1}} n(y) d y \\
& =E\left(S_{t}\right) N\left(\delta_{1}\right),
\end{aligned}
$$

where $N\left(\delta_{1}\right)$ is the standard normal distribution function evaluated at $y=\delta_{1}$.

Option Pricing Formula Derivation

- Next, consider $X \int_{X / s}^{\infty} g\left(R_{t}\right) d R_{t}$ (see (14)). Since $g\left(\mathrm{R}_{t}\right) d \mathrm{R}_{t}=f(k, t) t d k,(19)$ obtains:

$$
X \int_{X / S}^{\infty} g\left(\mathrm{R}_{t}\right) d \mathrm{R}_{t}=X \int_{\ln (X / S)}^{\infty} f(k \cdot t) t d k
$$

$$
=X \frac{1}{\sqrt{2 \pi \sigma^{2} t}} \int_{\ln (X / S)}^{\infty} e^{\left.-\left\{.5(k t-\mu t)^{2} / \sigma^{2} t\right]\right\}} t d k
$$

(19)

Option Pricing Formula Derivation

-Let $\approx=[k t-\mu t] / \sigma \sqrt{t} \Rightarrow k t=\mu t+\sigma \sqrt{t}$ z and $t d k=\sigma \sqrt{t} d \chi \Rightarrow$ limit of integration is

$$
[\ln (X / S)-\mu t] / \sigma \sqrt{t}=-\left(\delta_{1}-\sigma \sqrt{t}\right)=-\delta_{2} .
$$

-Thus, (20) obtains:

$$
\begin{align*}
& X \int_{X / S}^{\infty} g\left(R_{t}\right) d R_{t} \\
&=X \int_{-\delta_{2}}^{\infty}\left[e^{-5 z^{2}} / \sqrt{2 \pi}\right] d z \tag{20}\\
&=X \int_{-\infty}^{\delta_{2}} n(z) d z=X N\left(\delta_{2}\right) .
\end{align*}
$$

Option Pricing Formula Derivation

- Substituting (18) and (20) into (14) yields (21):

$$
\begin{equation*}
E\left(C_{t}\right)=E\left(S_{t}\right) N\left(\delta_{1}\right)-X N\left(\delta_{1}-\sigma \sqrt{t}\right) \tag{21}
\end{equation*}
$$

- Since $C=e^{-r t} \hat{E}\left(C_{t}\right)=e^{-r t} \hat{E}\left[\operatorname{Max}\left(S_{t}-X, 0\right)\right]$, we need to determine risk neutral values for $E\left(S_{t}\right)$ and δ_{1}.
- Since $\left(\mu+.5 \sigma^{2}\right) t=r t$ in a risk neutral economy,

$$
\hat{E}\left(S_{t}\right)=S e^{r t} ; \hat{\delta}_{1}=d_{1}=\frac{\ln (S / X)+\left(r+.5 \sigma^{2}\right) t}{\sigma \sqrt{t}} .
$$

Option Pricing Formula Derivation

- Substituting (21) into (11) and simplifying yields the Black-Scholes call option pricing formula:

$$
\begin{align*}
C & =e^{-r t} \hat{E}\left(C_{t}\right) \\
& =e^{-r t}\left[S e^{r t} N\left(d_{1}\right)-X N\left(d_{1}-\sigma \sqrt{t}\right)\right] \tag{22}\\
& =S N\left(d_{1}\right)-X e^{-r t} N\left(d_{2}\right) .
\end{align*}
$$

Option Pricing Formula Derivation

-The put option pricing formula follows directly from the put-call parity theorem:

$$
\begin{align*}
P & =C+X e^{-r t}-S \\
& =S N\left(d_{1}\right)-X e^{-r t} N\left(d_{2}\right)+X e^{-r t}-S \\
& =X e^{-r t}\left[1-N\left(d_{2}\right)\right]-S\left[1-N\left(d_{1}\right)\right] \tag{23}\\
& =X e^{-r t} N\left(-d_{2}\right)-S N\left(-d_{1}\right) .
\end{align*}
$$

Comparative Statics

-What is the call option hedge ratio $(\partial C / \partial S$; aka "delta")?
$\partial C / \partial S=N\left(d_{1}\right)+S\left(\partial N\left(d_{1}\right) / \partial d_{1}\right)\left(\partial d_{1} / \partial S\right)-$

$$
X e^{-r t}\left(\partial N\left(d_{2}\right) / \partial d_{2}\right)\left(\partial d_{2} / \partial S\right)
$$

$$
\begin{equation*}
=N\left(d_{1}\right)+\operatorname{Sn}\left(d_{1}\right)\left(\partial d_{1} / \partial S\right)-X e^{-r t} n\left(d_{2}\right)\left(\partial d_{2} / \partial S\right) \tag{24}
\end{equation*}
$$

Substituting $d_{2}=d_{1}-\sigma \sqrt{t}, \partial d_{2} / \partial S=\partial d_{1} / \partial S$ and $n\left(d_{2}\right)=n\left(d_{1}-\sigma \sqrt{t}\right),(25)$ obtains:

Comparative Statics

$\partial C / \partial S=N\left(d_{1}\right)+\left(\partial d_{1} / \partial S\right)\left[S n\left(d_{1}\right)-X e^{-r t} n\left(d_{1}-\sigma \sqrt{t}\right)\right]$
$=N\left(d_{1}\right)+\left(\partial d_{1} / \partial S\right) \frac{1}{\sqrt{2 \pi}}\left[S e^{-.5 d_{1}^{2}}-X e^{-r t} e^{-.5\left(d_{1}-\sigma \sqrt{t}\right)^{2}}\right]$
Since $d_{1}=\left[\ln (S / X)+\left(r+.5 \sigma^{2}\right) t\right] / \sigma \sqrt{t}, S=$ $X e^{d_{1} \sigma \sqrt{t}-\left(r+5 \sigma^{2}\right) t}$. Substituting for S in (25)'s bracketed term yields:

$$
\partial C / \partial S=N\left(d_{1}\right)+
$$

$$
\left.\left.\frac{\partial d_{1} / \partial S}{\sqrt{2 \pi}}\left[X e^{-.5 d_{1}^{2}} e^{d_{1} \sigma \sqrt{t}-\left(r+.5 \sigma^{2}\right) t}-X e^{-r t} e^{-.5\left(d_{1}-\sigma t^{5}\right)^{2}}\right]\right)\right]
$$

Comparative Statics

$$
\begin{aligned}
=N\left(d_{1}\right)+ & \frac{\partial d_{1} / \partial S}{\sqrt{2 \pi}}\left[X \left(e^{-\left(r+.5 \sigma^{2}\right) t+d_{1} \sigma \sqrt{t}-.5 d_{1}^{2}}\right.\right. \\
& \left.\left.-e^{-\left(r+.5 \sigma^{2}\right) t+d_{1} \sigma \sqrt{t}-.5 d_{1}^{2}}\right)\right]=N\left(d_{1}\right)>0(26)
\end{aligned}
$$

Comparative Statics

-What is the put option hedge ratio $(\partial P / \partial S)$?

$$
\begin{gathered}
\partial P / \partial S=-N\left(-d_{1}\right)+X e^{-r t}\left(\partial N\left(-d_{2}\right) / \partial d_{2}\right)\left(\partial d_{2} / \partial S\right)- \\
S\left(\partial N\left(-d_{1}\right) / \partial d_{1}\right)\left(\partial d_{1} / \partial S\right) \\
=-N\left(-d_{1}\right)-X e^{-r t} n\left(-d_{2}\right)\left(\partial d_{1} / \partial S\right)+S n\left(-d_{1}\right)\left(\partial d_{1} / \partial S\right) \\
=-N\left(-d_{1}\right)+\left(\partial d_{1} / \partial S\right)\left[S n\left(-d_{1}\right)-X e^{-r t} n\left(\sigma \sqrt{t}-d_{1}\right)\right](27)
\end{gathered}
$$

Since $\operatorname{Sn}\left(-d_{1}\right)-X e^{-r t} n\left(\sigma \sqrt{t}-d_{1}\right)=\operatorname{Sn}\left(d_{1}\right)-X e^{-r t} n\left(d_{1}-\right.$

$$
\sigma \sqrt{t})=0, \partial P / \partial S=-N\left(-d_{1}\right)<0
$$

Comparative Statics

Comparative Statics

- Note that the call option delta is $N\left(d_{1}\right)$, whereas the put option delta $-N\left(-d_{1}\right)=N\left(d_{1}\right)-1$!

Call Delta $\left(\boldsymbol{N}\left(d_{1}\right)\right)$	Put Delta $\left(-\boldsymbol{N}\left(-d_{1}\right)\right)$
1	0
.8	-.2
.6	-.4
.4	-.6
.2	-.8
0	-1

Comparative Statics

- How about $\partial C / \partial X$?

$$
\begin{gather*}
\partial C / \partial X=-e^{-r t} N\left(d_{2}\right)+S\left(\partial N\left(d_{1}\right) / \partial d_{1}\right)\left(\partial d_{1} / \partial X\right)- \\
X e^{-r t}\left(\partial N\left(d_{2}\right) / \partial d_{2}\right)\left(\partial d_{2} / \partial X\right) \\
=-e^{-r t} N\left(d_{2}\right)+\operatorname{Sn}\left(d_{1}\right) \frac{\partial d_{1}}{\partial X}-X e^{-r t} n\left(d_{2}\right) \frac{\partial d_{2}}{\partial X} \tag{28}
\end{gather*}
$$

Substituting $d_{2}=d_{1}-\sigma \sqrt{t}, \partial d_{2} / \partial X=\partial d_{1} / \partial X$ and $n\left(d_{2}\right)=$ $n\left(d_{1}-\sigma \sqrt{t}\right),(29)$ ' obtains:

$$
\begin{align*}
\partial C / \partial X & =-e^{-r t} N\left(d_{2}\right)+\frac{\partial d_{1}}{\partial X}\left[\operatorname{Sn}\left(d_{1}\right)-X e^{-r t} n\left(d_{1}-\sigma \sqrt{t}\right)\right] \\
& =-e^{-r t} N\left(d_{2}\right)<0 . \tag{29}
\end{align*}
$$

Comparative Statics

Comparative Statics

- How about $\partial P / \partial X$?

$$
\begin{gather*}
\partial P / \partial X=e^{-r t} N\left(-d_{2}\right)+X e^{-r t}\left(\frac{\partial N\left(-d_{2}\right)}{\partial d_{2}} \frac{\partial d_{2}}{\partial X}\right) \\
-S\left(\frac{\partial N\left(-d_{1}\right)}{\partial d_{1}} \frac{\partial d_{1}}{\partial X}\right) \\
=e^{-r t} N\left(-d_{2}\right)-X e^{-r t} n\left(-d_{2}\right) \frac{\partial d_{1}}{\partial X}+\operatorname{Sn}\left(-d_{1}\right)\left(\partial d_{1} / \partial X\right) \\
=e^{-r t} N\left(-d_{2}\right)+\left(\partial d_{1} / \partial X\right)\left[\operatorname{Sn}\left(-d_{1}\right)-X e^{-r t} n\left(\sigma \sqrt{t}-d_{1}\right)\right] \\
=e^{-r t} N\left(-d_{2}\right)>0 \tag{30}
\end{gather*}
$$

Comparative Statics

Comparative Statics

- How about $\partial C / \partial r$ (aka "rho")?

$$
\begin{align*}
& \partial C / \partial r=t X e^{-r t} N\left(d_{2}\right)+S\left(\frac{\partial N\left(d_{1}\right)}{\partial d_{1}} \frac{\partial d_{1}}{\partial r}\right)-X e^{-r t}\left(\frac{\partial N\left(d_{2}\right)}{\partial d_{2}} \frac{\partial d_{2}}{\partial r}\right) \\
& =t X e^{-r t} N\left(d_{2}\right)+\operatorname{Sn}\left(d_{1}\right) \frac{\partial d_{1}}{\partial r}-X e^{-r t} n\left(d_{2}\right) \frac{\partial d_{1}}{\partial r} \\
& =t X e^{-r t} N\left(d_{2}\right)+\frac{\partial d_{1}}{\partial r}\left[\operatorname{Sn}\left(d_{1}\right)-X e^{-r t} n\left(d_{1}-\sigma \sqrt{t}\right)\right] \\
& \quad=t X e^{-r t} N\left(d_{2}\right)>0 . \tag{31}
\end{align*}
$$

Comparative Statics

Comparative Statics

- How about $\partial P / \partial r$?

$$
\begin{align*}
& \frac{\partial P}{\partial r}=-t X e^{-r t} N\left(-d_{2}\right)+X e^{-r t}\left(\frac{\partial N\left(-d_{2}\right)}{\partial d_{2}} \frac{\partial d_{2}}{\partial r}\right)-S\left(\frac{\partial N\left(-d_{1}\right)}{\partial d_{1}} \frac{\partial d_{1}}{\partial r}\right) \\
& =-t X e^{-r t} N\left(-d_{2}\right)-X e^{-r t} n\left(-d_{2}\right) \frac{\partial d_{1}}{\partial r}+S n\left(-d_{1}\right) \frac{\partial d_{1}}{\partial r} \\
& =-t X e^{-r t} N\left(-d_{2}\right)+\frac{\partial d_{1}}{\partial r}\left[S n\left(-d_{1}\right)-X e^{-r t} n\left(\sigma \sqrt{t}-d_{1}\right)\right] \\
& \quad=-t X e^{-r t} N\left(-d_{2}\right)<0 \tag{32}
\end{align*}
$$

Comparative Statics

Comparative Statics

- How about $\partial C / \partial t$ (aka "theta")?
$\frac{\partial C}{\partial t}=r X e^{-r t} N\left(d_{2}\right)+S\left(\frac{\partial N\left(d_{1}\right)}{\partial d_{1}} \frac{\partial d_{1}}{\partial t}\right)-X e^{-r t}\left(\frac{\partial N\left(d_{2}\right)}{\partial d_{2}} \frac{\partial d_{2}}{\partial t}\right)$
Substituting $X=S e^{-d_{1} \sigma \sqrt{t}+\left(r+.5 \sigma^{2}\right) t}$ into (33),
$\frac{\partial C}{\partial t}=r X e^{-r t} N\left(d_{2}\right)+S\left[n\left(d_{1}\right) \frac{\partial d_{1}}{\partial t}-e^{-d_{1} \sigma \sqrt{t+\left(r+.5 \sigma^{2}\right) t-r t}} n\left(d_{2}\right) \frac{\partial d_{2}}{\partial t}\right]$
$=r X e^{-r t} N\left(d_{2}\right)+\frac{S}{\sqrt{2 \pi}}\left[\frac{\partial d_{1}}{\partial t} e^{-.5 d_{1}^{2}}-\frac{\partial d_{2}}{\partial t} e^{-d_{1} \sigma \sqrt{t}+\left(r+.5 \sigma^{2}\right) t-r t-5\left(d_{1}-\sigma \sqrt{t}\right)^{2}}\right]$
$=r X e^{-r t} N\left(d_{2}\right)+\frac{S}{\sqrt{2 \pi}}\left[\frac{\partial d_{1}}{\partial t} e^{-.5 d_{1}^{2}}-\frac{\partial d_{2}}{\partial t} e^{-d_{1} \sigma \sqrt{t}+d_{1} \sigma \sqrt{t}+r t-r t+.5 \sigma^{2} t-.5 \sigma^{2} t-5 d_{1}^{2}}\right]$

Comparative Statics

$$
=r X e^{-r t} N\left(d_{2}\right)+\operatorname{Sn}\left(d_{1}\right)\left[\frac{\partial d_{1}}{\partial t}-\frac{\partial d_{2}}{\partial t}\right]=r X e^{-r t} N\left(d_{2}\right)+\operatorname{Sn}\left(d_{1}\right) \frac{.5 \sigma}{\sqrt{t}}
$$

Thus (as indicated in (34) above), $\partial C / \partial t>0$.

Comparative Statics

- How about $\partial P / \partial t$? Consider equation (35):

$$
\begin{equation*}
\frac{\partial P}{\partial t}=-r X e^{-r t} N\left(-d_{2}\right)-X e^{-r t}\left(\frac{\partial N\left(d_{2}\right)}{\partial d_{2}} \frac{\partial d_{2}}{\partial t}\right)+S\left(\frac{\partial N\left(d_{1}\right)}{\partial d_{1}} \frac{\partial d_{1}}{\partial t}\right) \tag{35}
\end{equation*}
$$

Substituting $X=S e^{-d_{1} \sigma \sqrt{t}+\left(\tau+5 \sigma^{2}\right) t}$ into (35),

$$
\begin{aligned}
& \frac{\partial P}{\partial t}=-r X e^{-r t} N\left(-d_{2}\right)-S e^{-d_{1} \sigma \sqrt{t} t+\left(r+5 \sigma^{2}\right) t-r t} n\left(d_{2}\right) \frac{\partial d_{2}}{\partial t}+\operatorname{Sn}\left(d_{1}\right) \frac{\partial d_{1}}{\partial t} \\
& =-r X e^{-r t} N\left(-d_{2}\right)-\frac{S}{\sqrt{2 \pi}} e^{-d_{1} \sigma \sqrt{t}+.5 \sigma^{2}+-5\left(d_{1}-\sigma \sqrt{t}\right)^{2}} \frac{\partial d_{2}}{\partial t}+\operatorname{Sn}\left(d_{1}\right) \frac{\partial d_{1}}{\partial t}
\end{aligned}
$$

$$
=-r X e^{-r t} N\left(-d_{2}\right)-\operatorname{Sn}\left(d_{1}\right)\left[\frac{\partial d_{2}}{\partial t}-\frac{\partial d_{1}}{\partial t}\right]=-r X e^{-r t} N\left(-d_{2}\right)+\operatorname{Sn}\left(d_{1}\right) \frac{.5 \sigma}{\sqrt{t}} .
$$

Comparative Statics

Comparative Statics

- How about $\partial C / \partial \sigma$ (aka "vega")?

$$
\begin{equation*}
\frac{\partial C}{\partial \sigma}=S \frac{\partial N\left(d_{1}\right)}{\partial d_{1}} \frac{\partial d_{1}}{\partial \sigma}-X e^{-r t} \frac{\partial N\left(d_{2}\right)}{\partial d_{2}} \frac{\partial d_{2}}{\partial \sigma} \tag{36}
\end{equation*}
$$

Substituting $\frac{\partial N\left(d_{2}\right)}{\partial d_{2}}=n\left(d_{2}\right), \frac{\partial d_{2}}{\partial \sigma}=\frac{\partial d_{1}}{\partial \sigma}-\sqrt{t}$, and $X=$
$S e^{-d_{1} \sigma \sqrt{t}+\left(r+.5 \sigma^{2}\right) t}$ into (36),

$$
\frac{\partial C}{\partial \sigma}=S\left[n\left(d_{1}\right) \frac{\partial d_{1}}{\partial \sigma}-e^{-d_{1} \sigma \sqrt{t}+\left(r+.5 \sigma^{2}\right) t-r t} n\left(d_{2}\right) \frac{\partial d_{2}}{\partial \sigma}\right]
$$

Comparative Statics

$=\operatorname{Sn}\left(d_{1}\right) \frac{\partial d_{1}}{\partial \sigma}-S e^{-d_{1} \sigma \sqrt{t}+\left(r+.5 \sigma^{2}\right) t-r t} \frac{e^{-.5\left(d_{1}-\sigma \sqrt{t}\right)^{2}}}{\sqrt{2 \pi}}\left(\frac{\partial d_{1}}{\partial \sigma}-\sqrt{t}\right)$
Since $e^{-d_{1} \sigma \sqrt{t}+r t+.5 \sigma^{2} t-r t-.5\left(d_{1}-\sigma \sqrt{t}\right)^{2}}=e^{-.5 d_{1}^{2}}$, equation (37) can be rewritten as
$\frac{\partial C}{\partial \sigma}=\operatorname{Sn}\left(d_{1}\right)\left[\frac{\partial d_{1}}{\partial \sigma}-\left(\frac{\partial d_{1}}{\partial \sigma}-\sqrt{t}\right)\right]=\operatorname{Sn}\left(d_{1}\right) \sqrt{t}$

Thus (as indicated in (38) above), $\partial C / \partial \sigma>0$.

Comparative Statics

dC ds Wega ■ea Function of Stock Price

Comparative Statics

- How about $\partial P / \partial \sigma$?

$$
\begin{align*}
& \begin{aligned}
\frac{\partial P}{\partial \sigma}= & X e^{-r t} \frac{\partial N\left(-d_{2}\right)}{\partial d_{2}} \frac{\partial d_{2}}{\partial \sigma}-S \frac{\partial N\left(-d_{1}\right)}{\partial d_{1}} \frac{\partial d_{1}}{\partial \sigma} \\
& =-X e^{-r t} n\left(\sigma \sqrt{t}-d_{1}\right) \frac{\partial d_{2}}{\partial \sigma}+\operatorname{Sn}\left(-d_{1}\right) \frac{\partial d_{1}}{\partial \sigma} .
\end{aligned} \\
& \text { Substituting }-d_{2}=\sigma \sqrt{t}-d_{1}, \frac{\partial d_{2}}{\partial \sigma}=\frac{\partial d_{1}}{\partial \sigma}-\sqrt{t}, \text { and } X \tag{39}\\
& =S e^{-d_{1} \sigma \sqrt{t}+\left(r+.5 \sigma^{2}\right) t} \text { into (39) yields: }
\end{align*}
$$

Comparative Statics

$$
\begin{align*}
\frac{\partial P}{d \sigma}= & S\left[n\left(-d_{1}\right) \frac{\partial d_{1}}{\partial \sigma}-\frac{e^{-d d_{1} \sigma \sqrt{t}+\pi+r^{2}+5 \sigma^{2}-1-1-55\left(\sigma \sqrt{t}-d_{1}\right)^{2}}}{\sqrt{2 \pi}}\left(\frac{\partial d_{1}}{\partial \sigma}-\sqrt{t}\right)\right] \\
= & \operatorname{Sn}\left(-d_{1}\right)\left[\frac{\partial d_{1}}{\partial \sigma}-\left(\frac{\partial d_{1}}{\partial \sigma}-\sqrt{t}\right)\right] \\
& =\operatorname{Sn}\left(-d_{1}\right) \sqrt{t} . \tag{40}
\end{align*}
$$

Thus (as indicated in (40) above), $\partial P / \partial \sigma>0$.

Comparative Statics

dP ds as a Function of Stock Price

Comparative Statics

Derivative	Call Option	Put Option
$\frac{\partial C}{\partial S}$ and $\frac{\partial P}{\partial S}$ $($ delta $)$	$\frac{\partial C}{\partial S}=N\left(d_{1}\right)>0$	$\frac{\partial P}{\partial S}=-N\left(-d_{1}\right)<0$
$\frac{\partial C}{\partial K}$ and $\frac{\partial P}{\partial K}$	$\frac{\partial C}{\partial K}=-e^{-r t} N\left(d_{2}\right)<0$	$\frac{\partial P}{\partial K}=e^{-r t} N\left(-d_{2}\right)>0$
$\frac{\partial C}{\partial r}$ and $\frac{\partial P}{\partial r}$ $(r h o)$	$\frac{\partial C}{\partial r}=t K e^{-r t} N\left(d_{2}\right)>0$	$\frac{\partial P}{\partial r}=-t K e^{-r t} N\left(-d_{2}\right)<0$
$\frac{\partial C}{\partial t}$ and $\frac{\partial P}{\partial t}$	$\frac{\partial C}{\partial t}=r K e^{-r t} N\left(d_{2}\right)+\operatorname{Sn}\left(d_{1}\right) \cdot \frac{5 \sigma}{\sqrt{t}}>0$	$\frac{\partial P}{\partial t}=-r K e^{-r t} N\left(-d_{2}\right)+\operatorname{Sn}\left(d_{1}\right) \cdot \frac{5 \sigma_{k}}{\sqrt{t}}<?>0$
theta	$-\frac{\partial C}{\partial t}=-r K e^{-r t} N\left(d_{2}\right)-\operatorname{Sn}\left(d_{1}\right) \frac{.5 \sigma}{\sqrt{t}}<0$	$-\frac{\partial P}{\partial t}=r K e^{-r t} N\left(-d_{2}\right)-\operatorname{Sn}\left(d_{1}\right) \frac{5 \sigma_{k}}{\sqrt{t}}<>0$
$\frac{\partial C}{\partial \sigma}$ and $\frac{\partial P}{\partial \sigma}$ $($ vega $)$	$\frac{\partial C}{\partial \sigma}=\operatorname{Sn}\left(d_{1}\right) \sqrt{t}>0$	$\frac{\partial P}{\partial \sigma}=\operatorname{Sn}\left(-d_{1}\right) \sqrt{t}>0$

